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When stabilization of unstable periodic orbits or fixed points by the method given by Ott, Grebogi, and
Yorke (OGY) must be based on a measurement delayed byt orbit lengths, the performance of unmodified
OGY method is expected to decline. For experimental considerations, it is desired to know the range of
stability with minimal knowledge of the system. We find that unmodified OGY control fails beyond a maximal
Lyapunov number oflmax=1+s1/td. In this paper the area of stability is investigated both for OGY control of
known fixed points and for difference control of unknown or inaccurately known fixed points. An estimated
value of the control gain is given. Finally we outline what extensions must be considered if one wants to
stabilize fixed points with Lyapunov numbers abovelmax.
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I. INTRODUCTION

The appearence of delay is a common problem in the
control of chaotic systems. The effective delay time in any
feedback loop is the sum of at least three delay times, the
time of measurement, the time to compute the appropriate
control amplitude, and the response time of the system to the
applied control. If the applied control additionally must
propagate through the system[1], these response times may
extend to one or more cycle lengths.

In this paper we investigate time-discrete systems and fo-
cus on the question what limitations occur if one applies the
control method given by Ott, Grebogi, and Yorke(OGY) [2]
or difference feedback[3] in the presence of time delay.

Stabilization of chaotic systems by small perturbations in
system variables[4] or control parameters[2] has become a
widely discussed topic with applications in a broad area from
technical to biological systems. The OGY method given by
Ott, Grebogi, and Yorke[2] stabilizes unstable fixed points
(or unstable periodic orbits utilizing a Poincaré surface sec-
tion [5]) by feedback that is applied in the vicinity of the
fixed point x* of a discrete dynamicsxt+1= fsxt ,rd. The am-
plitude of the feedbackrt=r −r0 added to the control param-
eter r0 is proportional(with some user-adjustable parameter
« determining the strength of control) to the distancex−x*

from the fixed point,

rt = «sxt − x*d, s1d

and the feedback gain can be determined from a linearization
around the fixed point: Neglecting higher order terms, we
have

fsxt,r0 + rtd = fsx* ,r0d + sxt − x*d ·S ] f

] x
D

x* ,r0

+ rt ·S ] f

] r
D

x* ,r0

= fsx* ,r0d + lsxt − x*d + mrt

= fsx* ,r0d + sl + m«d · sxt − x*d, s2d

where the Taylor coefficientsl and m are fixed values for
each orbit. The second expression vanishes for«=−l /m, that
is, in linear approximation the system arrives exactly at the
fixed point in the next time step,xt+1=x* .

As the uncontrolled system at hand is assumed to be un-
stable in the fixed point, we generally have the situation
ulu.1. The system with applied control is stable, in linear
approximation, if the absolute value of the eigenvalues of the
iterated map is smaller than one,

uxt+1 − x* u = usl + m«d · sxt − x*du , uxt − x* u, s3d

i.e., usl+m«du,1. Therefore« must be chosen between
s−1−ld /m ands+1−ld /m, and this interval is of width 2/m
and independent ofl. For OGY control the range inl that
can be controlled remarkably is not bounded, which will ap-
pear to be different for delayed measurement(see the next
section).

It should be mentioned that the stability analysis of the
one-dimensional case holds also for higher-dimensional sys-
tems provided there is only one unstable direction. One can
transform on the eigensystem of the Jacobi matrix]f /]r and
finds again the equations of the one-dimensional case, re-
flecting that one only needs to apply control in the unstable
direction (see, e.g., Refs.[6,7]).

II. DELAYED CONTROL OF ITERATED MAPS

We want to know what limitations occur if the OGY rule
is applied without modification. In OGY control, the control
parameterrt is time dependent, and without loss of generality
we assume thatx* =0 and thatrt=0 if no control is applied.
For simplicity, we discuss the caset=1 first. For one time
step delay, instead ofrt=«xt we have the proportional feed-
back rule

rt = «xt−1. s4d

Using the time-delayed coordinatessxt ,xt−1d, the linearized
dynamics of the system with applied control is given by

Sxt+1

xt
D = Sl m«

1 0
DS xt

xt−1
D . s5d

The eigenvalues of s l
1

m«
0

d are given by a1,2
=sl /2d±Îsl2/4d+«m. Hence control can be achieved with«
being in an intervalg−1/m ,s1−ld /mf with the width s2
−ld /m.
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In contrast to the not-delayed case, we have a requirement
l,2 for the Lyapunov number, i.e., the direct application of
the OGY method fails for systems with a Lyapunov number
of 2 and higher. This limitation is caused by the additional
degree of freedom introduced in the system due to the time
delay.

Now we consider the general case. If the system measure-
ment is delayed byt steps,rt=«xt−t, we write the dynamics
in delayed coordinatessxt ,xt−1,xt−2, . . .xt−tdT,

1
xt+1

A

A
xt−t+1

2 =1
l 0 ¯ ¯ 0 «m

1 0 0

0 1 � A
A �

�

A � 0 A
0 ¯ ¯ 0 1 0

21
xt

A

A
xt−t

2 .

The characteristic polynomial is given by(we define rescaled
coordinatesã : =a /l and «̃=«m /lt+1)

0 = Psad = sa − ldat − «m,
s6d

0 = Psãd = sã − 1dãt − «̃.

Figure 1 shows the maximum of the absolute value of the
eigenvalues, fort=0,1, . . . ,5. In rescaled coordinatesã
=1/l corresponds to a control interval«̃±st ,ld. For

lmax= 1 +
1

t
s7d

the control interval vanishes, and forlùlmaxstd no control
is possible. Equation(7) and the subsequently derived stabil-
ity diagrams are the main result of this paper and are trans-
ferred to difference control in Sec. IV.

If we look at the Lyapunov exponentL : = ln l instead of
the Lyapunov number, we find with lnx, sx−1d the inequal-
ity

Lmax· t , 1. s8d

Therefore, delay time and Lyapunov exponent limit each
other if the system is to be controlled. This is consistent with
the loss of knowledge in the system by exponential separa-
tion of trajectories.

III. STABILITY DIAGRAMS BY THE JURY CRITERION

For smallt one can derive easily the borders of the sta-
bility area with help of the Jury criterion[8] (see Appendix
A). For t=1, the Jury coefficients are given bya1=−l / s1
+m«d and a2=−m«, and fort=2 to t=4 the corresponding
expressions are shown in Appendix B.

The equationsai = ±1 can, although the characteristic
polynomial (6) itself is of degree 5, be solved for one vari-
able (giving large expressions). The complete set of lines is
shown in Fig. 2 fort=4 and illustrates the redundancy of the
inequalities generated by the Jury table. Only four(three for
t=1) of the 2n inequalities constitute the border of stability,
and unfortunately it seems one must select them by hand.
Control is only necessary forulu.1, and folding the relevant

FIG. 1. Control intervals for several time delayst=0, . . . ,5: The
plots show the maximal absolute value of the eigenvalues as a func-
tion of the rescaled control gain«̃. Values ofuãu=1/l correspond to
uau=1 in (6) without rescaling, so one can obtain the rangeg«−,«+f
for which control is successfully achieved.

FIG. 2. Complete Jury diagram fort=4 (see Appendix B).

FIG. 3. Stability areas fort=1,2,3,4, combined. Only for
ulu.1 control is necessary(dashed line), and the stability area
(shaded fort=4) extends toulmaxu=2,3/2,4/3,5/4. Notethat still
both positive and negativel can be controlled. The abscissa
−m«ssgnldst−1d takes into account that for oddt a negativem« is
required, independent of the sign ofl.
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stability area into the same quadrant gives Fig. 3 showing
how lmax decreases for increasingt.

IV. STABILIZING UNKNOWN FIXED POINTS

As the OGY approach discussed above requires the
knowledge of the position of the fixed point, one may wish
to stabilize purely by feeding back differences of the system
variable at different times. This becomes relevant in the case
of parameter drifts[9] which often can occur in experimental
situations. A time-continuous strategyrstd=«fxstd−xst−tddg
has been introduced by Pyragas[10], whererstd is updated
continuously andtd matches the period of the unstable peri-
odic orbit. The time-discrete counterpart(i.e., control ampli-
tudes are calculated every Poincaré section) is defined by the
difference control scheme[3]. For control without delay, a
simple difference control strategy[3,7,11] is possible for
«m=−l /3, and eigenvalues of modulus smaller than unity of
the matrix s l+«m

1
−«m

0
d are obtained only for −3,l, +1, so

this method stabilizes only for oscillatory repulsive fixed
points with −3,l,−1 [3,7,11].

We can proceed in a similar fashion as for OGY control.
In the presence oft steps with delay, the linearized dynamics
of a simple difference feedbackrt=«sxt−t−xt−t−1d are given
by

1
xt+1

A

A
xt−t

2 =1
l 0 ¯ 0 «m − «m

1 0 0

0 1 � A
A �

�

A � 0 A
0 ¯ ¯ 0 1 0

21
xt

A

A
xt−t−1

2
in delayed coordinatessxt ,xt−1, . . . ,xt−t−1d, and the character-
istic polynomial is given by

0 = sa − ldat+1 + s1 − ad«m. s9d

As we must usext−t−1 in addition toxt−t , the system is of
dimensiont+2, and the lower bound of Lyapunov numbers
that can be controlled are found to be

linf = −
3 + 2t

1 + 2t
= − S1 +

1

t + 1/2
D s10d

and the asymptotic control amplitude at this point is

«m =
s− 1dt

1 + 2t
. s11d

The stability area in thesm« ,ld plane is bounded by the
lines ai = ±1 whereai are the coefficients given by the Jury
criterion[8] (see Appendix A). Fort=0, the Jury coefficients
area1=s−l+«md / s1+«md anda2=«m. For t=1 to t=3, the
Jury coefficients are shown in Appendix C.(See Fig 4.)

The controllable range is smaller than for the unmodified
OGY method, and is restricted to oscillatory repulsive fixed

points with linf ,lø−1. A striking observation is that in-
sertingt+ 1

2 for t in Eq. (7) exactly leads to the expression in
Eq. (10) which reflects the fact that the difference feedback
control can be interpreted as a discrete first derivative, taken
at time t− st+ 1

2
d. Thus the controllability relation(8) holds

again.
As l−1 is implying a natural time scale(that of exponen-

tial separation) of an orbit, it is quite natural that control
becomes limited by a border proportional to a product ofl
and a feedback delay time. Already without the additional
difficulty of a measurement delay this is expected to appear
for any control scheme that itself is using time-delayed feed-
back: For example, the extensions of time-discrete control
schemes discussed in Ref.[12] with an inherent Lyapunov
number limitation due to memory terms, and the experimen-
tally widely applied time-continuous schemes Pyragas and
ETDAS [13–15]. Here Pyragas control has the Lyapunov
exponent limitationLtpø2 together with the requirement of
the Floquet multiplier of the uncontrolled orbit having an
imaginary part ofp, meaning that deviations from the orbit
after one period experience are flipped around the orbit by
that angle, which is quite the generic case[16]. This nicely
corresponds with the requirement of a negative Lyapunov
number that appears in difference control. A positive
Lyapunov number in the time-discrete picture corresponds to
a zero flip of the time-continuous orbit, and is consistently
uncontrollable in both schemes.

Recently, the influence of a control loop latency has also
been studied for continuous time-delayed feedback[16] by
Floquet analysis, obtaining a critical value for the measure-
ment delayt, that corresponds to a maximal Lyapunov ex-
ponent logulinfu=Ltp=1/1/2+t /tp, where tp is the orbit
length and matched feedback delay. By the log inequality
that again translates(for small Lyapunov exponents) to our
result for the time-discrete difference control. An exact coin-
cidence could not be expected, as in Pyragas control the
feedback difference is computed continuously sliding with
the motion along the orbit, where in difference control it is
evaluated within each Poincaré section. For the ETDAS
scheme with latency, a detailed analysis is performed in Ref.

FIG. 4. Difference feedback fort=0,1,2,3:Stability borders
derived by the Jury criterion(see Appendix C). The stability dia-
gram of the nondelayed caset=0 has already been given in Ref.
[3]. Froml=−1 (dashed line) to l= +1 the system is stable without
control. For eacht, control is effective only within the respective
area(shaded fort=3).
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[17], showing that the range of stability can be extended
compared to the Pyragas scheme. Although the time-
continuous case(as ana priori infinite-dimensional delay-
differential system) could exhibit much more complex be-
havior, it is, however astonishing that for all three methods,
OGY, difference, and Pyragas control, the influence of mea-
surement delay mainly results in the same limitation of the
controllable Lyapunov number.

V. CONCLUSIONS

Delayed measurement is a generic problem that can ap-
pear in controlling chaos experiments. In some situations it
may be technically impossible to extend the control method,
then one wants to know the stability borders with minimal
knowledge of the system.

We have shown that both OGY control and difference
control cannot control orbits with an arbitrary Lyapunov
number if there is only delayed knowledge of the system.
The maximal Lyapunov number up to which an unstable
orbit can be controlled is given by 1+s1/td for OGY control
and 1+1/st+1/2d for difference control. For smallt the
stability borders can be derived by the Jury criterion, so that
the range of values for the control gain« can be determined
from the knowledge of the Taylor coefficientsl and m. If
one wants to overcome these limitations, one must modify
the control strategy.

This can be done either by applying control rhythmically
[3,6,7,9] being equivalent in a formal sense to controlling the
t+1-fold iterate(for OGY control), respectively,t+2-fold
iterate (for difference control) of the original system[6,7].
However, for larger values oft, the required values for the
control gain grow exponentially witht, because the possibil-
ity of applying control in the intermediate time steps is not
used.

The other possibility to improve control are memory
methods[6,7,9,12]. For negativel, in the nondelayed case
t=0 the stability area can be extended by two methods in-
cluding an averaged, respectively, decaying memory and re-
quiring only one extra parameter[12].

For arbitraryl and delayed measurement, an improved
control even ensuring all eigenvalues to become zero can be

achieved by memory methods that take into account control
amplitudes applied in previous time steps[6,7].

APPENDIX A: THE JURY CRITERION

The Jury criterion[8] gives a sufficient and necessary
condition that all roots of a given polynomial are of modulus
smaller than unity. Given a polynomialPsxd=anx

n

+an−1x
n−1+¯ +a1x+a0, one applies the iterative scheme of

the Jury table:

∀0øiøn bi ª an−i

an ª bn/an

∀1øiøn ai−1
new

ª ai − anbi

giving an and coefficientsan−1. . .a0 for the next iteration.
The Jury criterion states that the eigenvalues are of modu-

lus smaller than unity if and only if∀1øiønuaiu,1. The cri-
terion gives 2n (usually partly redundant) inequalities that
define hypersurfaces in coefficient space. These hypersur-
faces are given by algebraic equations; it is not necessary to
compute the roots of the polynomial.

Whereas the Jury criterion is extremely helpful for small
n and for numeric purposes, the hypersurface equations be-
come very complex for largen, and one must select the
relevant hypersurface equations. Two additional necessary
conditions (“check-first conditions”) for stability are
s−1dnanPs−1d.0 andanPs+1d.0.

APPENDIX B: JURY COEFFICIENTS FOR UNMODIFIED
OGY CONTROL

For t=2, the Jury coefficients take the values

a3 = − m«, a2 = −
lm«

1 − sm«d2, a1 = −
l

1 − sm«d2 + lm«

and among the crossing points of the six lines given byai
= ±1 one finds the maximal Lyapunov numberl= ±3/2. For
t=3 the Jury coefficients are

a4 = − m«, a3 = −
lm«

1 − sm«d2, a2 =
l2m«

− 1 + 2sm«d2 + l2sm«d2 − sm«d4, a1 =
l − lsm«d

− 1 +m« + l2m« + sm«d2 − sm«d3 .

For t=4, the borders given by the Jury coefficients are already described by algebraic equations of higher order,

a5 = − m«, a4 =
lm«

− 1 + sm«d2, a1 =
ls1 − lm« − sm«d2d

− 1 +lm« + l3m« + 2sm«d2 + l2sm«d2 − lsm«d3 − sm«d4 ,

a3 =
l2m«

− 1 + 2m«2 + l2m«2 − sm«d4, a2 =
l3m«

− 1 + 3sm«d2 + 2l2sm«d2 + l4sm«d2 − 3sm«d4 − 2l2sm«d4 + sm«d6 .

The equationsai = ±1 can, although the polynomial is of degree 5, be solved for one variable, see Fig. 2.
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APPENDIX C: JURY COEFFICIENTS FOR UNMODIFIED DIFFERENCE CONTROL

For t=1, the Jury coefficients are

a3 = «m, a2 = «msl − 1ds1 − s«md2d−1, a1 =
ss«md2 − lds1 − s«md2 − sl − 1d«m

s1 − s«md2d2 − s«md2sl − 1d2 .

For t=2, the Jury coefficients are

a4 = «m, a3 =
s− 1 +ld«m

1 − s«md2 , a2 =
s1 − ld«msl − s«md2d

− 1 + 3s«md2 − 2ls«md2 + l2s«md2 − s«md4 ,

a1 =
s1 + «mds− l + s«md2d

1 + «m − l«m + l2«m − 2s«md2 + ls«md2 − s«md3 .

For t=3, the Jury coefficients are

a5 = «m, a4 =
«m − l«m

− 1 + s«md2, a3 =
s1 − ld«msl − s«md2d

− 1 + 3s«md2 − 2ls«md2 + l2s«md2 − s«md4 ,

a2 =
s1 − ld«msl − s«md2d2

− 1 + 5s«md2 − 4ls«md2 + 3l2s«md2 − 2l3s«md2 + l4s«md2 − 3l2s«md4 + s«md6 − 36ls«md8 ,

a1 =
l − l«m + l2«m − s«md2 − ls«md2 + s«md3 − ls«md3 + s«md4

− 1 +«m − l«m + l2«m − l3«m + 3s«md2 − 2ls«md2 + l2s«md2 − 2ls«md3 − s«md4 .
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