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Stability borders of feedback control of delayed measured systems

Jens Christian Claussen
Institut fir Theoretische Physik und Astrophysik der Universitat Kiel, 24098 Kiel, Germany
(Received 16 April 2002; revised manuscript received 21 May 2004; published 19 Octobgr 2004

When stabilization of unstable periodic orbits or fixed points by the method given by Ott, Grebogi, and
Yorke (OGY) must be based on a measurement delayed bybit lengths, the performance of unmodified
OGY method is expected to decline. For experimental considerations, it is desired to know the range of
stability with minimal knowledge of the system. We find that unmodified OGY control fails beyond a maximal
Lyapunov number ol ,5,=1+(1/7). In this paper the area of stability is investigated both for OGY control of
known fixed points and for difference control of unknown or inaccurately known fixed points. An estimated
value of the control gain is given. Finally we outline what extensions must be considered if one wants to
stabilize fixed points with Lyapunov numbers aboyg,,.
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I. INTRODUCTION As the uncontrolled system at hand is assumed to be un-
The appearence of delay is a common problem in th table in the fixed point, we generally have the situation

control of chaotic systems. The effective delay time in any)‘|>1'.The. system with applied control is §table, in linear
feedback loop is the sum of at least three delay times, thgpproxmatlor_l, if the absolute value of the eigenvalues of the
time of measurement, the time to compute the appropriat erated map is smaller than one,

cont_rol amplitude, and the response time of th(_:: system to the Xeer = X = [N+ pe) - (% = X)| < | =X, (3)
applied control. If the applied control additionally must .

propagate through the systditj, these response times may '€ (A +pe)| <1. Thereforee must be chosen between
extend to one or more cycle lengths. (=1-N)/pm and(+1-N\)/ u, and this interval is of width 2u

In this paper we investigate time-discrete systems and foand independent of. For OGY control the range in that
cus on the question what limitations occur if one applies the&an be controlled remarkably is not bounded, which will ap-
control method given by Ott, Grebogi, and Yori@GY) [2] pear to be different for delayed measureme@e the next
or difference feedbac[3] in the presence of time delay. section).

Stabilization of chaotic systems by small perturbations in It should be mentioned that the stability analysis of the
system variable§4] or control parameterf2] has become a one-dimensional case holds also for higher-dimensional sys-
widely discussed topic with applications in a broad area fronfems provided there is only one unstable direction. One can
technical to biological systems. The OGY method given bytransform on the eigensystem of the Jacobi matfiéor and
Ott, Grebogi, and Yorkg2] stabilizes unstable fixed points finds again the equations of the one-dimensional case, re-
(or unstable periodic orbits utilizing a Poincaré surface secflecting that one only needs to apply control in the unstable
tion [5]) by feedback that is applied in the vicinity of the direction(see, e.g., Ref46,7]).
fix_ed pointx” of a discrete dynamics,,;=f(x;,r). The am- Il DELAYED CONTROL OF ITERATED MAPS
plitude of the feedback,=r-rq added to the control param-
eterrg is proportional(with some user-adjustable parameter We want to know what limitations occur if the OGY rule
e determining the strength of contydio the distancex—x" is applied without modification. In OGY control, the control
from the fixed point, parameter, is time dependent, and without loss of generality

_ « we assume that' =0 and that,=0 if no control is applied.
re=e(—x), @) For simplicity, we discuss the case=1 first. For one time

and the feedback gain can be determined from a linearizatiogtep delay, instead af=ex; we have the proportional feed-
around the fixed point: Neglecting higher order terms, weback rule

have M= eX-1. (4)
f(XFo+ ) = F(X,rg) + (% — X) - (a_f) +ry (ﬂ_f) Using the time-delayed coordinatés,X;_1), the linearized
IX/ ¢ I/ re dynamics of the system with applied control is given by
=f(X,Fo) + N(X = X) + ur¢ (Xt+l> _ <>\ M8>< Xt ) 5)
=10 1o + (N + pee) - (x = X), 2) %/ A1 0 /A% /'
where the Taylor coefficients and x are fixed values for The eigenvalues of (} %) are given by a,
each orbit. The second expression vanishes for\/u, that ~ =(\/2)£(\?/4)+eu. Hence control can be achieved with
is, in linear approximation the system arrives exactly at thébeing in an interval]-1/u,(1-N)/u[ with the width (2
fixed point in the next time step.,;=X". =M/ .
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FIG. 1. Control intervals for several time delaysO0, ...,5: The
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plots show the maximal absolute value of the eigenvalues as a func-

tion of the rescaled control gai Values of{a|=1/\ correspond to
|a|=1 in (6) without rescaling, so one can obtain the range s,[
for which control is successfully achieved.

FIG. 2. Complete Jury diagram far=4 (see Appendix B

Amax- 7<1. (8)

In contrast to the not-delayed case, we have a requirementerefore, delay time and Lyapunov exponent limit each
A< 2 for the Lyapunov number, i.e., the direct app“cation OfOther if the SyStem is to be controlled. This is consistent with
the OGY method fails for systems with a Lyapunov numberthe loss of knowledge in the system by exponential separa-
of 2 and higher. This limitation is caused by the additionaltion of trajectories.

degree of freedom introduced in the system due to the time

delay.

Ill. STABILITY DIAGRAMS BY THE JURY CRITERION

Now we consider the general case. If the system measure- For small7 one can derive easily the borders of the sta-

ment is delayed by steps\r,=ex._,, we write the dynamics
in delayed coordinates, X;_1, X2, - . Xi—,) |,

bility area with help of the Jury criteriof8] (see Appendix
A). For =1, the Jury coefficients are given lay=-N/(1
+ue) and ap,=—pue, and for7=2 to 7=4 the corresponding
expressions are shown in Appendix B.

A O - 0 zu The equationsa;=+1 can, although the characteristic
X X i : . .
tfl 1 0 0 .t polynomial (6) itself is of degree 5, be solved for one vari-
0 1 : able(giving large expressionsThe complete set of lines is
shown in Fig. 2 forr=4 and illustrates the redundancy of the
= inequalities generated by the Jury table. Only f@tree for
7=1) of the 2n inequalities constitute the border of stability,
. 0 : and unfortunately it seems one must select them by hand.
X a1 O 0 1 0 X Control is only necessary fox| > 1, and folding the relevant
The characteristic polynomial is given ye define rescaled (1)
coordinatesy: =a/\ andz=su/\™1) —Me(sgn})
1=1
0=P(a)=(a—N)a"-¢eu, 1
(6)
0=P(a)=(a-1)a"-%. 0.8
Figure 1 shows the maximum of the absolute value of the 0.6} =2
eigenvalues, forr=0,1,...,5. Inrescaled coordinate®& =4
=1/\ corresponds to a control interval(r,\). For 0.4 3
Z
1
Amax=1+ ;_ (7) 0.2 / Al

the control interval vanishes, and fae \,,,(7) no control

is possible. Equatio(i7) and the subsequently derived stabil-

0.25 0.5 0.75 1 1.25 1.5 1.75 2

FIG. 3. Stability areas forr=1,2,3,4, corhined. Only for

ity diagrams are the main result of this paper and are transx|>1 control is necessarydashed ling and the stability area

ferred to difference control in Sec. IV.
If we look at the Lyapunov exponerk: =In \ instead of
the Lyapunov number, we find with k< (x-1) the inequal-

ity

(shaded forr=4) extends td\ o =2,3/2,4/3,5/4. Notehat still
both positive and negativaék can be controlled. The abscissa
—ue(sgn\)(™Y takes into account that for odea negativeue is
required, independent of the sign xf
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stability area into the same quadrant gives Fig. 3 showing =0 . pe=1)°
how \,ax decreases for increasing -
0.75
IV. STABILIZING UNKNOWN FIXED POINTS =1 2%
T=
As the OGY approach discussed above requires the =z =3 0.25 A

knowledge of the position of the fixed point, one may wish By S IS —"- 05
to stabilize purely by feeding back differences of the system 0.25
variable at different times. This becomes relevant in the case 2
of parameter drift§9] which often can occur in experimental )
situations. A time-continuous strategit) =e[x(t) —x(t—7) ] -0~75\
has been introduced by Pyragd®], wherer(t) is updated -1
continuously andy matches the period of the unstable peri- ) N
odic orbit. The time-discrete counterpdice., control ampli- FIG. 4. Difference feedback for=0,1,2,3:Stability borders

tudes are calculated every Poincaré segtisnlefined by the ~ derived by the Jury criteriotsee Appendix & The stability dia-
difference control schemg8]. For control without delay, a 9ram of the nondelayed case0 has already been given in Ref.
simple difference control strategig, 7,11 is possible for L3} FromA=-1(dashedlingto)=+1the system is stable without
eu=-\/3, and eigenvalues of modulus smaller than unity Ofcontrol. For eachi, control is effective only within the respective
(e - . area(shaded forr=3).
the matrix(**7* ") are obtained only for ~¥\ < +1, so
this method stabilizes only for oscillatory repulsive fixed points with \j; <A\ <-1. A striking observation is that in-
points with —-3<\ <-1[3,7,11. serting¢+% for 7in EqQ.(7) exactly leads to the expression in
We can proceed in a similar fashion as for OGY control.Eq. (10) which reflects the fact that the difference feedback
In the presence of steps with delay, the linearized dynamics control can be interpreted as a discrete first derivative, taken
of a simple difference feedbadk=z(x_,~X_,.,) are given at timet—(r+ %). Thus the controllability relatiori8) holds
by again.
As A1 is implying a natural time scal@hat of exponen-
tial separatiop of an orbit, it is quite natural that control
0 eu —eu becomes limited by a border proportional to a produch of
0 . and a feedback delay time. Already without the additional
: difficulty of a measurement delay this is expected to appear
for any control scheme that itself is using time-delayed feed-
back: For example, the extensions of time-discrete control
) schemes discussed in R¢L12] with an inherent Lyapunov
: 0 : number limitation due to memory terms, and the experimen-
Xm 1 tally widely applied time-continuous schemes Pyragas and
0 - - 010 ETDAS [13-15. Here Pyragas control has the Lyapunov
exponent limitationA 7, < 2 together with the requirement of
o e the Floquet multiplier of the uncontrolled orbit having an
istic polynomial is given by imaginary part ofrr, meaning that deviations from the orbit
0=(a-Na™+(1-a)spu. (9) after one periqd e_xperi_ence are flip_ped around_the_ orbit by
that angle, which is quite the generic cd4€]. This nicely
As we must use_,; in addition tox,,, the system is of corresponds with the requirement of a negative Lyapunov
dimension7+2, and the lower bound of Lyapunov numbers number that appears in difference control. A positive

Xt+1

O - >
L O O

in delayed coordinatel;, %;_1, - - . ,Xi—~1), and the character-

that can be controlled are found to be Lyapunov number in the time-discrete picture corresponds to
a zero flip of the time-continuous orbit, and is consistently
3+27 .
= ——=—(1+ (10) uncontrollable |n.both schemes.
1+27 T+1/2 Recently, the influence of a control loop latency has also

been studied for continuous time-delayed feedbdd} by
Floguet analysis, obtaining a critical value for the measure-
-1" ment delayr, that corresponds to a maximal Lyapunov ex-
= Teon AD ponent loghin|=Ar,=1/1/2+7/7, where 7, is the orbit
length and matched feedback delay. By the log inequality
The stability area in théue,\) plane is bounded by the that again translategor small Lyapunov exponentdo our
lines o;=+1 whereq; are the coefficients given by the Jury result for the time-discrete difference control. An exact coin-
criterion[8] (see Appendix A For =0, the Jury coefficients cidence could not be expected, as in Pyragas control the
areay=(-N+eu)/(l+eu) anda,=eu. Forr=1to7=3, the  feedback difference is computed continuously sliding with
Jury coefficients are shown in Appendix Gee Fig 4. the motion along the orbit, where in difference control it is
The controllable range is smaller than for the unmodifiedevaluated within each Poincaré section. For the ETDAS
OGY method, and is restricted to oscillatory repulsive fixedscheme with latency, a detailed analysis is performed in Ref.

and the asymptotic control amplitude at this point is

ep
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[17], showing that the range of stability can be extendedachieved by memory methods that take into account control
compared to the Pyragas scheme. Although the timeamplitudes applied in previous time stejgs7].

continuous caséas ana priori infinite-dimensional delay-
differential system could exhibit much more complex be-
havior, it is, however astonishing that for all three methods,
OQGY, difference, and Pyragas control, the influence of mea- The Jury criterion[8] gives a sufficient and necessary
surement delay mainly results in the same limitation of thecondition that all roots of a given polynomial are of modulus
controllable Lyapunov number. smaller than unity. Given a polynomialP(x)=a.x"
+a, X"+ +a;x+a,, one applies the iterative scheme of
the Jury table:
Delayed measurement is a generic problem that can ap-

APPENDIX A: THE JURY CRITERION

V. CONCLUSIONS

pear in controlling chaos experiments. In some situations it osi<n  bi:=an
may be technically impossible to extend the control method,
then one wants to know the stability borders with minimal an == by/a,
knowledge of the system.

We have shown that both OGY control and difference Oicien &= a - ayb;

control cannot control orbits with an arbitrary Lyapunov giving a, and coefficients,,...a, for the next iteration.

number if there is only delayed knowledge of the system: o .
The maximal Lyapunov number up to which an unstable The Jury criterion states that the eigenvalues are of modu-

orbit can be controlled is given by X%/7) for OGY control It:‘:‘iosr?qa!lfgsth;r](uirgz| i ag?tlorllé/ dlféfi:ﬂliﬁi(fuzli-tﬂgg fr:;t
and 1+1(7+1/2) for difference control. For smalr the g y party q

. . o efine hypersurfaces in coefficient space. These hypersur-
stability borders can be derived by th_e Jury criterion, So th aces are given by algebraic equations; it is not necessary to
the range of values for the control gaircan be determined

- compute the roots of the polynomial.
from thetkntowledge of trtf Tayllpr.tc?gffluenksand '“t If di Whereas the Jury criterion is extremely helpful for small
one wants 1o overcome these fimitations, oné must mo 'f¥1 and for numeric purposes, the hypersurface equations be-
the control strategy.

Thi be d ither b Vi trol thvthmicall come very complex for large, and one must select the
36 7'5 cban_ € done Iel t?r yfapp 3{'”9 contro r ty ”r_nlcatlhy relevant hypersurface equations. Two additional necessary
[3.6,7.9 €ing equivaient in a formarl Sense to controling the ¢, , yitiong (“check-first conditions) for stability are
7+1-fold iterate(for OGY contro), respectively,7+2-fold N _

: ) A (-1)"a,P(-1)>0 anda,P(+1) >0.

iterate (for difference control of the original systeni6,7].

However, for larger values of, the required values for the

control gain grow exponentially with, because the possibil- APPENDIX B: JURY COEFFICIENTS FOR UNMODIFIED

ity of applying control in the intermediate time steps is not OGY CONTROL
used. _ -

The other possibility to improve control are memory For 7=2, the Jury coefficients take the values
methods[6,7,9,13. For negative\, in the nondelayed case e N

=0 the stability area can be extended by two methods in- &@3=~ue, azx= _TMS)Z, ay =

cluding an averaged, respectively, decaying memory and re-

quiring only one extra parametgt?2]. and among the crossing points of the six lines givenaby
For arbitraryN and delayed measurement, an improved=+1 one finds the maximal Lyapunov number £3/2. For

control even ensuring all eigenvalues to become zero can be=3 the Jury coefficients are

C1- (ue)?+ \ue

_hpue : Nue : N =N\(ue)
1-(ue)? “27 =1+ 2Aue)2 4+ \2(ue)2— (ue)® 1 — 1+ e+ \2ue + (ue)? - (ue)®’

Q=" e, az=

For 7=4, the borders given by the Jury coefficients are already described by algebraic equations of higher order,

_ hpue _ ML =Nue = (ue)?
To14(ue)? M - 1ape +N3ue + 2(ue)? + N2 (ue)? — Mue)* - (ue)*

as=-pe, o

_ Nue _ Nue
-1+ 2ue?+ Nue® - (ue)®’ =1+ 3(ue)?+ 2\ (ue)® + N (ue)? - 3(ue)* — 204 (ue)* + (ue)®’

ag ap =

The equationsy,=+1 can, although the polynomial is of degree 5, be solved for one variable, see Fig. 2.
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APPENDIX C: JURY COEFFICIENTS FOR UNMODIFIED DIFFERENCE CONTROL
For 7=1, the Jury coefficients are

_((ew?=NA = (ep)? = (A = Dep
(1-(ew)?? = (emw)*(\ - 1)?

az=ep, ap=ep(N-D(A-(ew)d™, a

For 7=2, the Jury coefficients are

=& o= (=1+Neu o= (L-Neuh - (en)?
ATER BT ew? T MPT -1+ 3ew)? - 2Mew)? + N2 e )P~ (e )

= (1 +ep)(=\+(ep)?)
Y lvsu—hep+ Nep— 2ep)?+ M) - (sp)®

For 7=3, the Jury coefficients are

su-hep (L -Neu = (ep)?)
*T -1+ 3ew)?- 20 (w2 + N2 ep)? - (ep)”’

S —1+(sp)?

g =&EM, Qy

_ (1-Nep - (w)??
—1+5eu)? = AN(ep)?+ N4 (ep)? = 2\3(ep)? + NM(ep)? = N2 (ep)* + (en)® - 36N (en)®’

ap

_ N =Nep+Nep = (epw)? = New)?® + (ep)® = New)®+ (ep)*
T —1l+ep—hep+N2ep—Nep+3(ep)? - 2Mep)? + N2(ep)? - 2\ (ep)® - (e)*
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